Creating Stored Procedures and Functions

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

* Differentiate between anonymous blocks and
subprograms

* Create a simple procedure and invoke it from an
anonymous block

* Create a simple function
* Create a simple function that accepts a parameter
* Differentiate between procedures and functions

ORACLE

9-2 Copyright © 2004, Oracle. All rights reserved.

Procedures and Functions

* Are named PL/SQL blocks
* Are called PL/SQL subprograms
* Have block structures similar to anonymous

blocks:

— Optional declarative section (without DECLARE
keyword)

— Mandatory executable section usﬂl'

— Optional section to handle exceptions ii

ORACLE

9-3 Copyright © 2004, Oracle. All rights reserved.

Differences Between Anonymous Blocks
and Subprograms

Anonymous Blocks Subprograms

Unnamed PL/SQL blocks Named PL/SQL blocks

Compiled every time Compiled only once

Not stored in the database | Stored in the database

Cannot be invoked by They are named and therefore can
other applications be invoked by other applications
Do not return values Subprograms called functions

must return values

Cannot take parameters Can take parameters

ORACLE

9-4 Copyright © 2004, Oracle. All rights reserved.

Procedure: Syntax

CREATE [OR REPLACE] PROCEDURE procedure name
[(argumentl [model] datatypel,
argument?2 [model2] datatypeZz2,
..o
IS|AS
procedure body;

ORACLE

9-5 Copyright © 2004, Oracle. All rights reserved.

Procedure: Example

CREATE TABLE dept AS SELECT * FROM departments;
CREATE PROCEDURE add dept IS

dept id dept.department idSTYPE;

dept name dept.department name%TYPE;
BEGIN

dept id:=280;

dept name:='ST-Curriculum';

INSERT INTO dept (department id,department name)
VALUES (dept id,dept name);

DBMS OUTPUT.PUT LINE (' Inserted '| |

SQLSROWCOUNT ||' row ') ;

END;
/

ORACLE

9-6 Copyright © 2004, Oracle. All rights reserved.

Procedure: Example

ORACLE

9-7 Copyright © 2004, Oracle. All rights reserved.

Invoking the Procedure

BEGIN

add dept;
END;

/

SELECT department id, department name FROM
dept WHERE department id=280;

Inserted 1 row
FLASGL procedure successiully completed.

DEPARTMENT ID DEPARTMENT NAME
280 ST-Curriculurm

ORACLE

9-8 Copyright © 2004, Oracle. All rights reserved.

Function: Syntax

CREATE [OR REPLACE] FUNCTION function name
[(argumentl [model] datatypel,
argument?2 [mode2] datatypeZ2,
..o]

RETURN datatype

IS|AS

function body;

ORACLE

9-9 Copyright © 2004, Oracle. All rights reserved.

Function: Example

CREATE FUNCTION check sal RETURN Boolean IS
dept id employees.department idS3TYPE;
empno employees.employee id%TYPE;

sal employees.salary3TYPE;

avg_sal employees.salary$TYPE;
BEGIN

empno :=205;

SELECT salary,department id INTO sal,dept id
FROM employees WHERE employee id= empno;
SELECT avg(salary) INTO avg sal FROM employees
WHERE department id=dept id;
IF sal > avg _sal THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END IF;
EXCEPTION
WHEN NO DATA FOUND THEN
RETURN NULL;
END ;
/

ORACLE

9-10 Copyright © 2004, Oracle. All rights reserved.

Invoking the Function

SET SERVEROUTPUT ON
BEGIN
IF (check sal IS NULL) THEN
DBMS OUTPUT.PUT LINE('The function returned
NULL due to exception') ;
ELSIF (check sal) THEN
DBMS OUTPUT.PUT LINE ('Salary > average');
ELSE
DBMS OUTPUT.PUT LINE ('Salary < average');
END IF;
END ;
/

Salary = average
FLISGL procedure successfully completed.

ORACLE

9-11 Copyright © 2004, Oracle. All rights reserved.

Passing Parameter to the Function

DROP FUNCTION check_sal;

/
CREATE FUNCTION check sal (empno employees.employee id$%TYPE)

RETURN Boolean IS
dept id employees.department id3TYPE;

sal employees.salary3$TYPE;
avg _sal employees.salary3TYPE;
BEGIN

SELECT salary,department id INTO sal,dept id
FROM employees WHERE employee id=empno;
SELECT avg(salary) INTO avg sal FROM employees
WHERE department id=dept id;
IF sal > avg_sal THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END IF;
EXCEPTION

ORACLE

9-12 Copyright © 2004, Oracle. All rights reserved.

Invoking the Function with a Parameter

BEGIN
DBMS OUTPUT.PUT LINE ('Checking for employee with id 205');
IF (check sal(205) IS NULL) THEN
DBMS OUTPUT.PUT LINE('The function returned
NULL due to exception');
ELSIF (check sal(205)) THEN
DBMS OUTPUT.PUT LINE('Salary > average');
ELSE
DBMS OUTPUT.PUT LINE('Salary < average');
END IF;
DBMS OUTPUT.PUT LINE ('Checking for employee with id 70');
IF (check sal(70) IS NULL) THEN
DBMS OUTPUT.PUT LINE ('The function returned
NULL due to exception');
ELSIF (check sal(70)) THEN
END IF;
END ;
/

ORACLE

9-13 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
* Create a simple procedure
* Invoke the procedure from an anonymous block
* Create a simple function
* Create a simple function that accepts parameters
* Invoke the function from an anonymous block

ORACLE

9-14 Copyright © 2004, Oracle. All rights reserved.

Practice 9: Overview

This practice covers the following topics:

* Converting an existing anonymous block to a
procedure

* Modifying the procedure to accept a parameter

* Writing an anonymous block to invoke the
procedure

ORACLE

9-15 Copyright © 2004, Oracle. All rights reserved.

Practice 9: Overview

ORACLE

9-16 Copyright © 2004, Oracle. All rights reserved.

	Creating Stored Procedures and Functions
	Objectives
	Procedures and Functions
	Differences Between Anonymous Blocks and Subprograms
	Procedure: Syntax
	Procedure: Example
	Slide 7
	Invoking the Procedure
	Function: Syntax
	Function: Example
	Invoking the Function
	Passing Parameter to the Function
	Invoking the Function with a Parameter
	Summary
	Practice 9: Overview
	Slide 16

